模仿学习从专家轨迹中学习政策。尽管据信专家数据对于模仿质量至关重要,但发现一种模仿学习方法,对抗性模仿学习(AIL)可以具有出色的性能。只需仅仅在一个专家轨迹上,即使在诸如运动控制之类的任务上,AIL也可以符合专家的性能。这种现象有两个神秘的要点。首先,为什么AIL只能使用几个专家轨迹表现良好?其次,尽管计划范围的时间长,但为什么AIL仍能保持良好的性能?在本文中,我们从理论上探讨了这两个问题。对于总基于差异的ail(称为TV-ail),我们的分析显示了一个无水平的模仿差距$ \ MATHCAL O(\ {\ {\ min \ {1,\ sqrt {| \ Mathcal S |/n} \})$在从运动控制任务中抽象的一类实例上。这里$ | \ Mathcal S | $是表格Markov决策过程的状态空间大小,而$ n $是专家轨迹的数量。我们强调了界限的两个重要特征。首先,在小样本制度中,这种界限都是有意义的。其次,这一界限表明,无论计划范围如何,电视填充的模仿缝隙最多都是1。因此,这种结合可以解释经验观察。从技术上讲,我们利用了电视填充中多阶段策略优化的结构,并通过动态编程提出了新的舞台耦合分析
translated by 谷歌翻译
最近,数据库管理系统(DBMS)社区目睹了机器学习(ML)解决方案的DBMS任务的能力。尽管表现明显,但这些现有解决方案几乎不会被认为是令人满意的。首先,DBMS中的基于ML的方法不够有效,因为它们在每个特定任务上进行了优化,并且无法探索或理解任务之间的内部连接。其次,培训过程具有严重的限制,妨碍他们的实用性,因为他们需要从划痕中恢复整个模型以获得新的dB。此外,对于每个再次,它们需要过多的训练数据,这对于新的DB来获得和不可用的非常昂贵。我们建议探讨ML方法跨任务和跨DBS的传递,以解决这些基本缺点。在本文中,我们提出了一个统一的模型MTMLF,它使用多任务培训程序来捕获任务的可转让知识和预先列车前的微调程序,以蒸馏出跨DBS的可转移元知识。我们认为,此范例更适合云DB服务,并且有可能彻底改变ML如何在DBMS中使用的方式。此外,为了证明MTMLF的预测力和可行性,我们提供了关于查询优化任务的具体和非常有希望的案例研究。最后但并非最不重要的是,我们沿着这一工作线讨论了几个具体的研究机会。
translated by 谷歌翻译
Cardinality estimation is one of the most fundamental and challenging problems in query optimization. Neither classical nor learning-based methods yield satisfactory performance when estimating the cardinality of the join queries. They either rely on simplified assumptions leading to ineffective cardinality estimates or build large models to understand the data distributions, leading to long planning times and a lack of generalizability across queries. In this paper, we propose a new framework FactorJoin for estimating join queries. FactorJoin combines the idea behind the classical join-histogram method to efficiently handle joins with the learning-based methods to accurately capture attribute correlation. Specifically, FactorJoin scans every table in a DB and builds single-table conditional distributions during an offline preparation phase. When a join query comes, FactorJoin translates it into a factor graph model over the learned distributions to effectively and efficiently estimate its cardinality. Unlike existing learning-based methods, FactorJoin does not need to de-normalize joins upfront or require executed query workloads to train the model. Since it only relies on single-table statistics, FactorJoin has small space overhead and is extremely easy to train and maintain. In our evaluation, FactorJoin can produce more effective estimates than the previous state-of-the-art learning-based methods, with 40x less estimation latency, 100x smaller model size, and 100x faster training speed at comparable or better accuracy. In addition, FactorJoin can estimate 10,000 sub-plan queries within one second to optimize the query plan, which is very close to the traditional cardinality estimators in commercial DBMS.
translated by 谷歌翻译
In this paper, we propose an end-to-end Retrieval-Augmented Visual Language Model (REVEAL) that learns to encode world knowledge into a large-scale memory, and to retrieve from it to answer knowledge-intensive queries. REVEAL consists of four key components: the memory, the encoder, the retriever and the generator. The large-scale memory encodes various sources of multimodal world knowledge (e.g. image-text pairs, question answering pairs, knowledge graph triplets, etc) via a unified encoder. The retriever finds the most relevant knowledge entries in the memory, and the generator fuses the retrieved knowledge with the input query to produce the output. A key novelty in our approach is that the memory, encoder, retriever and generator are all pre-trained end-to-end on a massive amount of data. Furthermore, our approach can use a diverse set of multimodal knowledge sources, which is shown to result in significant gains. We show that REVEAL achieves state-of-the-art results on visual question answering and image captioning.
translated by 谷歌翻译
从社会或商业平台等工业生态系统连续发出的数据通常表示为由多种节点/边缘类型组成的异质图(HG)。使用称为异质图神经网络(HGNN)的HGS的最先进的图形学习方法用于学习深层上下文信息形式表示。但是,来自工业应用程序的许多HG数据集都遭受节点类型之间的标签失衡。由于没有直接学习使用扎根于不同节点类型的标签的直接方法,因此HGNN仅应用于具有丰富标签的几个节点类型。我们为HGNN提出了一个称为知识转移网络(KTN)的零射击传输学习模块,该模块通过HG中给出的丰富关系信息将知识从标签的源节点类型转移到零标记的节点类型。 KTN源自我们在这项工作中引入的理论关系,在HGNN模型中给出的每个节点类型的不同特征提取器之间。 KTN将6种不同类型的HGNN模型的性能提高了960%,以推断零标记的节点类型,并且在HGS上的18个不同的转移学习任务中,最高的最先进的转移学习基线胜过最高的最高转移学习基线。
translated by 谷歌翻译
在大规模不完整的知识图(kgs)上回答复杂的一阶逻辑(fol)查询是一项重要但挑战性的任务。最近的进步将逻辑查询和KG实体嵌入了相同的空间,并通过密集的相似性搜索进行查询。但是,先前研究中设计的大多数逻辑运算符不满足经典逻辑的公理系统,从而限制了其性能。此外,这些逻辑运算符被参数化,因此需要许多复杂的查询作为训练数据,在大多数现实世界中,这些数据通常很难收集甚至无法访问。因此,我们提出了Fuzzqe,这是一种基于模糊逻辑的逻辑查询嵌入框架,用于回答KGS上的查询。 Fuzzqe遵循模糊逻辑以原则性和无学习的方式定义逻辑运算符,在这种方式中,只有实体和关系嵌入才需要学习。 Fuzzqe可以从标记为训练的复杂逻辑查询中进一步受益。在两个基准数据集上进行的广泛实验表明,与最先进的方法相比,Fuzzqe在回答FOL查询方面提供了明显更好的性能。此外,只有KG链接预测训练的Fuzzqe可以实现与经过额外复杂查询数据训练的人的可比性能。
translated by 谷歌翻译
Recent years have witnessed the emerging success of graph neural networks (GNNs) for modeling structured data. However, most GNNs are designed for homogeneous graphs, in which all nodes and edges belong to the same types, making them infeasible to represent heterogeneous structures. In this paper, we present the Heterogeneous Graph Transformer (HGT) architecture for modeling Web-scale heterogeneous graphs. To model heterogeneity, we design node-and edge-type dependent parameters to characterize the heterogeneous attention over each edge, empowering HGT to maintain dedicated representations for different types of nodes and edges. To handle dynamic heterogeneous graphs, we introduce the relative temporal encoding technique into HGT, which is able to capture the dynamic structural dependency with arbitrary durations. To handle Web-scale graph data, we design the heterogeneous mini-batch graph sampling algorithm-HGSampling-for efficient and scalable training. Extensive experiments on the Open Academic Graph of 179 million nodes and 2 billion edges show that the proposed HGT model consistently outperforms all the state-of-the-art GNN baselines by 9%-21% on various downstream tasks. The dataset and source code of HGT are publicly available at https://github.com/acbull/pyHGT.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译